Convolution properties for certain meromorphically multivalent functions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some properties of meromorphically multivalent functions

* Correspondence: [email protected] Department of Mathematics, Yangzhou University, Yangzhou, 225002, PR China Full list of author information is available at the end of the article Abstract By using the method of differential subordinations, we derive certain properties of meromorphically multivalent functions. 2010 Mathematics Subject Classification: 30C45; 30C55.

متن کامل

Neighborhoods and Partial Sums of Certain Meromorphically Multivalent Functions

By making use of the familiar concept of neighborhoods of analytic functions, the author proves an inclusion relations associated with the (n, δ)−neighborhoods of a subclass Q k [p, α; A, B] which was introduced by Srivastava, Hossen and Aouf. The partial sums of the functions in Q k [p, α; A, B] are also considered.

متن کامل

Some properties for a class of meromorphically multivalent functions with linear operator

‎Making use of a linear operator‎, ‎which is defined here by means of‎ ‎the Hadamard product (or convolution)‎, ‎we define a subclass‎ ‎$mathcal {T}_{p}(a‎, ‎c‎, ‎gamma‎, ‎lambda; h)$ of meromorphically‎ ‎multivalent functions‎. ‎The main object of this paper is to‎ ‎investigate some important properties for the class‎. ‎We also derive‎ ‎many results for the Hadamard roducts of functions belong...

متن کامل

Properties of multivalent functions associated with certain integral operator

Let A(p) denote the class of functions which are analytic in the open unit disk U. By making use of certain integral operator,we obtain some interesting properties of multivalent analytic functions.

متن کامل

On Certain Classes of Meromorphically Multivalent Functions Involving the Generalized Hypergeometric Functions

0 ∣∣∣∣Reh(z)− ρ 1− ρ ∣∣∣∣ dθ ≤ kπ, z = re, where k > 2 and 0 ≤ ρ < 1. This class was introduced by Padmanabhan et al. in [9]. We note that Pk(0) = Pk, see Pinchuk [11], P2(ρ) = P (ρ), the class of analytic functions with positive real part greater than ρ and P2(0) = P, the class of functions with positive real part. From (1.2) we can easily deduce that h(z) ∈ Pk(ρ) if, and only if, there exists...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Filomat

سال: 2017

ISSN: 0354-5180,2406-0933

DOI: 10.2298/fil1701113l